Magneto-Thermo-Elastic Stresses and Perturbation of the Magnetic Field Vector in an EGM Rotating Disk

Authors

  • H Sepiani Department of Mechanical Engineering, Faculty of Engineering, University of Tehran
  • M Azamia Department of Mechanical Engineering, Faculty of Engineering, University of Kashan
Abstract:

In this article, the magneto-thermo-elastic problem of exponentially graded material (EGM) hollow rotating disk placed in uniform magnetic and temperature fields is considered. Exact solutions for stresses and perturbations of the magnetic field vector in EGM hollow rotating disk are determined using the infinitesimal theory of magneto-thermo-elasticity under plane stress. The material properties, except Poisson’s ratio, are assumed to depend on variable of the radius and they are expressed as exponential functions of radius. The direct method is used to solve the heat conduction and Hyper-geometric functions are employed to solve Navier equation. The temperature, displacement, and stress fields and the perturbation of the magnetic field vector are determined and compared with those of the homogeneous case. Hence, the effect of in-homogeneity on the stresses and the perturbation of magnetic field vector distribution are demonstrated. The results of this study are applicable for designing optimum EGM hollow rotating disk.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Magneto-Thermo-Elastic Stresses and Perturbation of Magnetic Field Vector in a Thin Functionally Graded Rotating Disk

In this paper, a semi-analytical solution for magneto-thermo-elastic problem in an axisymmetric functionally graded (FG) hollow rotating disk with constant thickness placed in uniform magnetic and thermal fields with heat convection from disk’s surfaces is presented. Solution for stresses and perturbation of magnetic field vector in a thin FG rotating disk is determined using infinitesimal theo...

full text

Electro-magneto-thermo-mechanical Behaviors of a Radially Polarized FGPM Thick Hollow Sphere

In this study an analytical method is developed to obtain the response of electro-magneto-thermo-elastic stress and perturbation of a magnetic field vector for a thick-walled spherical functionally graded piezoelectric material (FGPM). The hollow sphere, which is placed in a uniform magnetic field, is subjected to a temperature gradient, inner and outer pressures and a constant electric potenti...

full text

Magneto-Thermo-Elastic Behavior of Cylinder Reinforced with FG SWCNTs Under Transient Thermal Field

In this article, magneto-thermo-elastic stresses and perturbation of magnetic field vector are analyzed for a thick-walled cylinder made from polystyrene, reinforced with functionally graded (FG) single-walled carbon nanotubes (SWCNTs) in radial direction, while subjected to an axial and uniform magnetic field as well as a transient thermal field. Generalized plane strain state is considered in...

full text

Purcell magneto-elastic swimmer controlled by an external magnetic field

This paper focuses on the mechanism of propulsion of a Purcell swimmer whose segments are magnetized and react to an external magnetic field applied into the fluid. By an asymptotic analysis, we prove that it is possible to steer the swimmer along a chosen direction when the control functions are prescribed as an oscillating field. Moreover, we discuss what are the main obstructions to overcome...

full text

Inhomogeneity Material Effect on Electromechanical Stresses, Displacement and Electric Potential in FGM Piezoelectric Hollow Rotating Disk

In this paper, a radially piezoelectric functionally graded rotating disk is investigated by the analytical solution. The variation of material properties is assumed to follow a power law along the radial direction of the disk. Two resulting fully coupled differential equations in terms of the displacement and electric potential are solved directly. Numerical results for different profiles of i...

full text

On the Magneto-Thermo-Elastic Behavior of a Functionally Graded Cylindrical Shell with Pyroelectric Layers Featuring Interlaminar Bonding Imperfections Rested in an Elastic Foundation

The behavior of an exponentially graded hybrid cylindrical shell subjected to an axisymmetric thermo-electro-mechanical loading placed in a constant magnetic field is investigated. The hybrid shell is consisted of a functionally graded host layer  embedded with pyroelectric layers as sensor and/or actuator  that can be imperfectly bonded to the inner and the outer surfaces of a shell. The shell...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 2

pages  168- 178

publication date 2010-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023